
Week 13 - Wednesday

 What did we talk about last time?
 Software engineering
 Modeling and UML
 Activity diagrams
 Use case diagrams
 Sequence diagrams
 State diagrams
 Class diagrams

 Architecture patterns

 Testing can only show the presence of errors, not their absence.
 Edsger Dijkstra

 Historically, testing has sometimes been a task given to junior
developers

 As systems have gotten more complex, people have gotten
more excited about testing

 Finding ways to test subtle aspects of a program can be a
rewarding challenge

 There are two almost opposing purposes for
testing

 Showing that software meets its
requirements
 Validation testing
 Looking for good outputs

 Finding inputs where software doesn't work
 Defect testing
 Looking for bad outputs

 When a project is due, students often
confuse the two
 Trying to convince themselves that the code is

fine instead of looking for problems

 Commercial software systems often go through three stages of testing
 Development testing
 Look for bugs during development
 Designers and programmers do the testing

 Release testing
 Test a complete version of the code to see if it meets requirements
 A separate testing team does the testing

 User testing
 Users test the system in a real environment
 Acceptance testing is a special kind of user testing to decide whether or not the

product should be accepted or sent back

 Development testing is the idea of testing you're most
familiar with
 Testing the software as it's being developed
 Development testing is focused on defect testing
 Debugging happens alongside development testing

 Three stages of development testing:
 Unit testing: testing individual classes or methods
 Component testing: testing components made from several objects
 System testing: testing the system as a whole

 Unit testing focuses on very small components
 Methods or functions
 Objects

 Unit tests try many different inputs for the methods or objects
to make sure that the outputs match

 Broken method to determine if a year is a leap year:

 Tests:
 isLeapYear(2016)→ true (correct)
 isLeapYear(2018)→ false (correct)
 isLeapYear(1900)→ false (correct)
 isLeapYear(2000)→ false (incorrect)

public static boolean isLeapYear(int year) {
return year % 4 == 0 && year % 100 != 0;

}

 Because unit tests are based on simple relationships between
input and expected output, they can usually be automated
 And they totally should be

 Automated tests have three parts:
 Setup: initialize the system with the inputs and expected outputs
 Call: call the method you're testing
 Assertion: compare the real output with the expected output

 You can create unit tests by hand and run them
 However, the problem is so universal that many automated

testing frameworks have been created
 The most famous for Java is JUnit
 Wikipedia lists about 50 just for Java
 Some have special strengths, like creating mock objects that behave

in ways that are useful for testing
 These testing frameworks make it easier to generate and run

the tests

 Effective tests will show:
 When used as expected, a component does what it's supposed to
 Defects, if there are any, in a component

 In testing terminology, these are called positive tests
(showing that stuff works) and negative tests (trying to make
things crash)

 It's hard to pick good test cases

 Two strategies for picking test cases:
 Partition testing
▪ Identify groups of inputs that will be processed in the same way
▪ Pick representatives from each group

 Guideline-based testing
▪ Use guidelines to choose test cases
▪ Guidelines are based on experience about the kinds of errors that

programmers often make

 Partition testing is based on the observation that programs
often behave similarly for all members of a set of values

 Such a set is called an equivalence partition
 You can try to find a set of equivalence partitions that covers

all behaviors

 When dealing with sequences, arrays, and lists, consider:
 Testing software with sequences that have a single value (or no

values)
 Use sequences of different sizes in different tests
 Design tests that access the first, middle, and last elements of a

sequence

 One philosophy of testing is making black box tests
 A black box test takes some input A and knows that the

output is supposed to be B
 It assumes nothing about the internals of the program, only

the specification
 To write black box tests, you come up with a set of input you

think covers lots of cases and you run it and see if it works
 In the real world, black box testing can easily be done by a

team that did not work on the original development

 White box testing is the opposite of black box testing
 Sometimes white box testing is called "clear box testing"

 In white box testing, you can use your knowledge of how the
code works to generate tests

 Are there lots of if statements?
 Write tests that go through all possible branches

 There are white box testing tools that can help you generate
tests to exercise all branches

 Which is better, white box or black box testing?

 Beyond unit testing is component testing
 Components are made up of several independent units
 The errors are likely to be from interactions between the units
 Hopefully, the individual units have already been unit tested

 The interfaces between the units have to be tested
 Parameter interfaces in method calls
 Shared memory interfaces
 Procedural interfaces in which an object implements a set of

procedures
 Message passing interfaces

 System testing is when we integrate components together in
a version of the whole system

 Though similar to component testing, there are differences:
 Older reusable components and commercial components might be

integrated with new components
 Components developed by different teams might be integrated for

the first time
 Sometimes, you only see certain behavior when you get

everything together
 Try testing all the use cases you expect the system to see

 JUnit is a popular framework for automating the unit testing
of Java code

 JUnit is built into Eclipse and many other IDEs
 It is possible to run JUnit from the command line after

downloading appropriate libraries
 JUnit is one of many xUnit frameworks designed to automate

unit testing for many languages
 You are required to make JUnit tests for Project 4
 JUnit 5 is the latest version of JUnit, and there are small

differences from previous versions

 For each set of tests, create a class
 Code that must be done ahead of every test has the @BeforeEach annotation
 Each method that does a test has the @Test annotation
import org.junit.jupiter.api.*;
public class Testing {

private String creature;

@BeforeEach
public void setUp() {

creature = "Wombat";
}

@Test
public void testWombat() {

Assertions.assertEquals("Wombat", creature, "Wombat failure");
}

}

 An assertion is something that must be true in a program
 Java (4 and higher) has assertions built in
 You can put the following in code somewhere:

 If the condition before the colon is true, everything is fine
 If the condition is false, an AssertionError will be thrown with the

message after the colon
 Caveat: The JVM normally runs with assertions turned off, for

performance reasons
 You have to run it with assertions on for assertion errors to happen
 You should run the JVM with assertions on for testing purposes

String word = "phlegmatic";
assert word.length() < 5 : "Word is too long!";

 When you run a test, you expect to get a certain output
 You should assert that this output is what it should be
 JUnit 5 has a class called Assertions that has a number of static methods used to assert

that different things are what they should be
 Running JUnit takes care of turning assertions on

 The most common is assertEquals(), which takes the expected value, the actual
value, and a message to report if they aren't equal:
 assertEquals(int expected, int actual, String message)
 assertEquals(char expected, char actual, String message)
 assertEquals(double expected, double actual, double delta, String
message)

 assertEquals(Object expected, Object actual, String message)
 Another useful method in Assertions:
 assertTrue(boolean condition, String message)

 We know that the substring() method on String
objects works, but what if we wanted to test it?

import org.junit.jupiter.api.*;

public class StringTest {

@Test
public void testSubstring() {

String string = "dysfunctional";
String substring = string.substring(3,6);
Assertions.assertEquals("fun", substring, "Substring failure!");

}
}

 What if a method is supposed to throw an exception under certain conditions?
 It should be considered a failure not to throw an exception
 The Assertions class also has a fail()method that should never be called
import org.junit.jupiter.api.*;

public class FailTest {
@Test
public void testBadString() {

String string = "armpit";
try {

int number = Integer.parseInt(string);
Assertions.fail("An exception should have been thrown!");

}
catch(NumberFormatException e) {}

}
}

 Imagine you've got a method with the following signature
that can determine whether or not a String is a palindrome
 Assume it's a sophisticated function that ignores case and

punctuation

 What are good tests for it?
 Let's write at least four JUnit tests for it, covering cases when
phrase is a palindrome and when it isn't

public static boolean isPalindrome(String phrase)

 Consider the following Complex class, for holding real and
imaginary numbers

public class Complex {
final double real;
final double imaginary;
public Complex(double real, double imaginary) {

this.real = real;
this.imaginary = imaginary;

}
public double getReal() {

return real;
}
public double getImaginary() {

return imaginary;
}

}

 Let's make a quadratic() method that returns an array of
Complex objects that are the roots of the quadratic equation
𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐

 Now, let's test it!
 What are good test cases?

public static Complex[] quadratic(double a, double b, double c) {
// Fill in code

}

 More JUnit examples

 Work on Project 4

	COMP 2000
	Last time
	Questions?
	Project 4
	Testing
	Testing
	Purposes of testing
	Stages of testing
	Development testing
	Unit testing
	Unit test example
	Automated tests
	Automated testing frameworks
	Choosing unit test cases
	Choosing unit test cases, continued
	Equivalence partitioning
	Examples of guidelines
	Black box testing
	White box testing
	Component testing
	System testing
	JUnit
	JUnit
	JUnit classes
	Assertions
	Assertions in JUnit tests
	Assertion example
	Sometimes failing is winning
	JUnit practice
	Complex class
	JUnit practice
	Quiz
	Upcoming
	Next time…
	Reminders

