
Week 13 - Wednesday



 What did we talk about last time?
 Software engineering
 Modeling and UML
 Activity diagrams
 Use case diagrams
 Sequence diagrams
 State diagrams
 Class diagrams

 Architecture patterns









 Testing can only show the presence of errors, not their absence.
 Edsger Dijkstra

 Historically, testing has sometimes been a task given to junior 
developers

 As systems have gotten more complex, people have gotten 
more excited about testing

 Finding ways to test subtle aspects of a program can be a 
rewarding challenge



 There are two almost opposing purposes for 
testing

 Showing that software meets its 
requirements
 Validation testing
 Looking for good outputs

 Finding inputs where software doesn't work
 Defect testing
 Looking for bad outputs

 When a project is due, students often 
confuse the two
 Trying to convince themselves that the code is 

fine instead of looking for problems



 Commercial software systems often go through three stages of testing
 Development testing
 Look for bugs during development
 Designers and programmers do the testing

 Release testing
 Test a complete version of the code to see if it meets requirements
 A separate testing team does the testing

 User testing
 Users test the system in a real environment
 Acceptance testing is a special kind of user testing to decide whether or not the 

product should be accepted or sent back



 Development testing is the idea of testing you're most 
familiar with
 Testing the software as it's being developed
 Development testing is focused on defect testing
 Debugging happens alongside development testing

 Three stages of development testing:
 Unit testing: testing individual classes or methods
 Component testing: testing components made from several objects
 System testing: testing the system as a whole



 Unit testing focuses on very small components
 Methods or functions
 Objects

 Unit tests try many different inputs for the methods or objects 
to make sure that the outputs match



 Broken method to determine if a year is a leap year:

 Tests:
 isLeapYear(2016)→ true (correct)
 isLeapYear(2018)→ false (correct)
 isLeapYear(1900)→ false (correct)
 isLeapYear(2000)→ false (incorrect)

public static boolean isLeapYear(int year) {
return year % 4 == 0 && year % 100 != 0;

}



 Because unit tests are based on simple relationships between 
input and expected output, they can usually be automated
 And they totally should be

 Automated tests have three parts:
 Setup: initialize the system with the inputs and expected outputs
 Call: call the method you're testing
 Assertion: compare the real output with the expected output



 You can create unit tests by hand and run them
 However, the problem is so universal that many automated 

testing frameworks have been created
 The most famous for Java is JUnit
 Wikipedia lists about 50 just for Java
 Some have special strengths, like creating mock objects that behave 

in ways that are useful for testing
 These testing frameworks make it easier to generate and run 

the tests



 Effective tests will show:
 When used as expected, a component does what it's supposed to
 Defects, if there are any, in a component

 In testing terminology, these are called positive tests 
(showing that stuff works) and negative tests (trying to make 
things crash)

 It's hard to pick good test cases



 Two strategies for picking test cases:
 Partition testing
▪ Identify groups of inputs that will be processed in the same way
▪ Pick representatives from each group

 Guideline-based testing
▪ Use guidelines to choose test cases
▪ Guidelines are based on experience about the kinds of errors that 

programmers often make



 Partition testing is based on the observation that programs 
often behave similarly for all members of a set of values

 Such a set is called an equivalence partition
 You can try to find a set of equivalence partitions that covers 

all behaviors



 When dealing with sequences, arrays, and lists, consider:
 Testing software with sequences that have a single value (or no 

values)
 Use sequences of different sizes in different tests
 Design tests that access the first, middle, and last elements of a 

sequence



 One philosophy of testing is making black box tests
 A black box test takes some input A and knows that the 

output is supposed to be B
 It assumes nothing about the internals of the program, only 

the specification
 To write black box tests, you come up with a set of input you 

think covers lots of cases and you run it and see if it works
 In the real world, black box testing can easily be done by a 

team that did not work on the original development



 White box testing is the opposite of black box testing
 Sometimes white box testing is called "clear box testing"

 In white box testing, you can use your knowledge of how the 
code works to generate tests

 Are there lots of if statements?
 Write tests that go through all possible branches

 There are white box testing tools that can help you generate 
tests to exercise all branches

 Which is better, white box or black box testing?



 Beyond unit testing is component testing
 Components are made up of several independent units
 The errors are likely to be from interactions between the units
 Hopefully, the individual units have already been unit tested

 The interfaces between the units have to be tested
 Parameter interfaces in method calls
 Shared memory interfaces
 Procedural interfaces in which an object implements a set of 

procedures
 Message passing interfaces



 System testing is when we integrate components together in 
a version of the whole system

 Though similar to component testing, there are differences:
 Older reusable components and commercial components might be 

integrated with new components
 Components developed by different teams might be integrated for 

the first time
 Sometimes, you only see certain behavior when you get 

everything together
 Try testing all the use cases you expect the system to see





 JUnit is a popular framework for automating the unit testing 
of Java code

 JUnit is built into Eclipse and many other IDEs
 It is possible to run JUnit from the command line after 

downloading appropriate libraries
 JUnit is one of many xUnit frameworks designed to automate 

unit testing for many languages
 You are required to make JUnit tests for Project 4
 JUnit 5  is the latest version of JUnit, and there are small 

differences from previous versions



 For each set of tests, create a class
 Code that must be done ahead of every test has the @BeforeEach annotation
 Each method that does a test  has the @Test annotation
import org.junit.jupiter.api.*;
public class Testing {

private String creature;

@BeforeEach
public void setUp() {

creature = "Wombat";
}

@Test
public void testWombat() {

Assertions.assertEquals("Wombat", creature, "Wombat failure");
}

}



 An assertion is something that must be true in a program
 Java (4 and higher) has assertions built in
 You can put the following in code somewhere:

 If the condition before the colon is true, everything is fine
 If the condition is false, an AssertionError will be thrown with the 

message after the colon
 Caveat: The JVM normally runs with assertions turned off, for 

performance reasons
 You have to run it with assertions on for assertion errors to happen
 You should run the JVM with assertions on for testing purposes

String word = "phlegmatic";
assert word.length() < 5 : "Word is too long!";



 When you run a test, you expect to get a certain output
 You should assert that this output is what it should be
 JUnit 5 has a class called Assertions that has a number of static methods used to assert 

that different things are what they should be
 Running JUnit takes care of turning assertions on

 The most common is assertEquals(), which takes the expected value, the actual 
value, and a message to report if they aren't equal:
 assertEquals(int expected, int actual, String message)
 assertEquals(char expected, char actual, String message)
 assertEquals(double expected, double actual, double delta, String 
message)

 assertEquals(Object expected, Object actual, String message)
 Another useful method in Assertions:
 assertTrue(boolean condition, String message)



 We know that the substring() method on String
objects works, but what if we wanted to test it?

import org.junit.jupiter.api.*;

public class StringTest {

@Test
public void testSubstring() {

String string = "dysfunctional";
String substring = string.substring(3,6);
Assertions.assertEquals("fun", substring, "Substring failure!");

}
}



 What if a method is supposed to throw an exception under certain conditions?
 It should be considered a failure not to throw an exception
 The Assertions class also has a fail()method that should never be called
import org.junit.jupiter.api.*;

public class FailTest {
@Test
public void testBadString() {

String string = "armpit";
try {

int number = Integer.parseInt(string);
Assertions.fail("An exception should have been thrown!");

}
catch(NumberFormatException e) {}

}
}



 Imagine you've got a method with the following signature 
that can determine whether or not a String is a palindrome
 Assume it's a sophisticated function that ignores case and 

punctuation

 What are good tests for it?
 Let's write at least four JUnit tests for it, covering cases when 
phrase is a palindrome and when it isn't

public static boolean isPalindrome(String phrase)



 Consider the following Complex class, for holding real and 
imaginary numbers

public class Complex {
final double real;
final double imaginary;
public Complex(double real, double imaginary) {

this.real = real;
this.imaginary = imaginary;

}
public double getReal() {

return real;
}
public double getImaginary() {

return imaginary;
}

}



 Let's make a quadratic() method that returns an array of 
Complex objects that are the roots of the quadratic equation 
𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐

 Now, let's test it!
 What are good test cases?

public static Complex[] quadratic(double a, double b, double c) {
// Fill in code

}







 More JUnit examples



 Work on Project 4
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