
Week 13 - Wednesday



 What did we talk about last time?
 Software engineering
 Modeling and UML
 Activity diagrams
 Use case diagrams
 Sequence diagrams
 State diagrams
 Class diagrams

 Architecture patterns









 Testing can only show the presence of errors, not their absence.
 Edsger Dijkstra

 Historically, testing has sometimes been a task given to junior 
developers

 As systems have gotten more complex, people have gotten 
more excited about testing

 Finding ways to test subtle aspects of a program can be a 
rewarding challenge



 There are two almost opposing purposes for 
testing

 Showing that software meets its 
requirements
 Validation testing
 Looking for good outputs

 Finding inputs where software doesn't work
 Defect testing
 Looking for bad outputs

 When a project is due, students often 
confuse the two
 Trying to convince themselves that the code is 

fine instead of looking for problems



 Commercial software systems often go through three stages of testing
 Development testing
 Look for bugs during development
 Designers and programmers do the testing

 Release testing
 Test a complete version of the code to see if it meets requirements
 A separate testing team does the testing

 User testing
 Users test the system in a real environment
 Acceptance testing is a special kind of user testing to decide whether or not the 

product should be accepted or sent back



 Development testing is the idea of testing you're most 
familiar with
 Testing the software as it's being developed
 Development testing is focused on defect testing
 Debugging happens alongside development testing

 Three stages of development testing:
 Unit testing: testing individual classes or methods
 Component testing: testing components made from several objects
 System testing: testing the system as a whole



 Unit testing focuses on very small components
 Methods or functions
 Objects

 Unit tests try many different inputs for the methods or objects 
to make sure that the outputs match



 Broken method to determine if a year is a leap year:

 Tests:
 isLeapYear(2016)→ true (correct)
 isLeapYear(2018)→ false (correct)
 isLeapYear(1900)→ false (correct)
 isLeapYear(2000)→ false (incorrect)

public static boolean isLeapYear(int year) {
return year % 4 == 0 && year % 100 != 0;

}



 Because unit tests are based on simple relationships between 
input and expected output, they can usually be automated
 And they totally should be

 Automated tests have three parts:
 Setup: initialize the system with the inputs and expected outputs
 Call: call the method you're testing
 Assertion: compare the real output with the expected output



 You can create unit tests by hand and run them
 However, the problem is so universal that many automated 

testing frameworks have been created
 The most famous for Java is JUnit
 Wikipedia lists about 50 just for Java
 Some have special strengths, like creating mock objects that behave 

in ways that are useful for testing
 These testing frameworks make it easier to generate and run 

the tests



 Effective tests will show:
 When used as expected, a component does what it's supposed to
 Defects, if there are any, in a component

 In testing terminology, these are called positive tests 
(showing that stuff works) and negative tests (trying to make 
things crash)

 It's hard to pick good test cases



 Two strategies for picking test cases:
 Partition testing
▪ Identify groups of inputs that will be processed in the same way
▪ Pick representatives from each group

 Guideline-based testing
▪ Use guidelines to choose test cases
▪ Guidelines are based on experience about the kinds of errors that 

programmers often make



 Partition testing is based on the observation that programs 
often behave similarly for all members of a set of values

 Such a set is called an equivalence partition
 You can try to find a set of equivalence partitions that covers 

all behaviors



 When dealing with sequences, arrays, and lists, consider:
 Testing software with sequences that have a single value (or no 

values)
 Use sequences of different sizes in different tests
 Design tests that access the first, middle, and last elements of a 

sequence



 One philosophy of testing is making black box tests
 A black box test takes some input A and knows that the 

output is supposed to be B
 It assumes nothing about the internals of the program, only 

the specification
 To write black box tests, you come up with a set of input you 

think covers lots of cases and you run it and see if it works
 In the real world, black box testing can easily be done by a 

team that did not work on the original development



 White box testing is the opposite of black box testing
 Sometimes white box testing is called "clear box testing"

 In white box testing, you can use your knowledge of how the 
code works to generate tests

 Are there lots of if statements?
 Write tests that go through all possible branches

 There are white box testing tools that can help you generate 
tests to exercise all branches

 Which is better, white box or black box testing?



 Beyond unit testing is component testing
 Components are made up of several independent units
 The errors are likely to be from interactions between the units
 Hopefully, the individual units have already been unit tested

 The interfaces between the units have to be tested
 Parameter interfaces in method calls
 Shared memory interfaces
 Procedural interfaces in which an object implements a set of 

procedures
 Message passing interfaces



 System testing is when we integrate components together in 
a version of the whole system

 Though similar to component testing, there are differences:
 Older reusable components and commercial components might be 

integrated with new components
 Components developed by different teams might be integrated for 

the first time
 Sometimes, you only see certain behavior when you get 

everything together
 Try testing all the use cases you expect the system to see





 JUnit is a popular framework for automating the unit testing 
of Java code

 JUnit is built into Eclipse and many other IDEs
 It is possible to run JUnit from the command line after 

downloading appropriate libraries
 JUnit is one of many xUnit frameworks designed to automate 

unit testing for many languages
 You are required to make JUnit tests for Project 4
 JUnit 5  is the latest version of JUnit, and there are small 

differences from previous versions



 For each set of tests, create a class
 Code that must be done ahead of every test has the @BeforeEach annotation
 Each method that does a test  has the @Test annotation
import org.junit.jupiter.api.*;
public class Testing {

private String creature;

@BeforeEach
public void setUp() {

creature = "Wombat";
}

@Test
public void testWombat() {

Assertions.assertEquals("Wombat", creature, "Wombat failure");
}

}



 An assertion is something that must be true in a program
 Java (4 and higher) has assertions built in
 You can put the following in code somewhere:

 If the condition before the colon is true, everything is fine
 If the condition is false, an AssertionError will be thrown with the 

message after the colon
 Caveat: The JVM normally runs with assertions turned off, for 

performance reasons
 You have to run it with assertions on for assertion errors to happen
 You should run the JVM with assertions on for testing purposes

String word = "phlegmatic";
assert word.length() < 5 : "Word is too long!";



 When you run a test, you expect to get a certain output
 You should assert that this output is what it should be
 JUnit 5 has a class called Assertions that has a number of static methods used to assert 

that different things are what they should be
 Running JUnit takes care of turning assertions on

 The most common is assertEquals(), which takes the expected value, the actual 
value, and a message to report if they aren't equal:
 assertEquals(int expected, int actual, String message)
 assertEquals(char expected, char actual, String message)
 assertEquals(double expected, double actual, double delta, String 
message)

 assertEquals(Object expected, Object actual, String message)
 Another useful method in Assertions:
 assertTrue(boolean condition, String message)



 We know that the substring() method on String
objects works, but what if we wanted to test it?

import org.junit.jupiter.api.*;

public class StringTest {

@Test
public void testSubstring() {

String string = "dysfunctional";
String substring = string.substring(3,6);
Assertions.assertEquals("fun", substring, "Substring failure!");

}
}



 What if a method is supposed to throw an exception under certain conditions?
 It should be considered a failure not to throw an exception
 The Assertions class also has a fail()method that should never be called
import org.junit.jupiter.api.*;

public class FailTest {
@Test
public void testBadString() {

String string = "armpit";
try {

int number = Integer.parseInt(string);
Assertions.fail("An exception should have been thrown!");

}
catch(NumberFormatException e) {}

}
}



 Imagine you've got a method with the following signature 
that can determine whether or not a String is a palindrome
 Assume it's a sophisticated function that ignores case and 

punctuation

 What are good tests for it?
 Let's write at least four JUnit tests for it, covering cases when 
phrase is a palindrome and when it isn't

public static boolean isPalindrome(String phrase)



 Consider the following Complex class, for holding real and 
imaginary numbers

public class Complex {
final double real;
final double imaginary;
public Complex(double real, double imaginary) {

this.real = real;
this.imaginary = imaginary;

}
public double getReal() {

return real;
}
public double getImaginary() {

return imaginary;
}

}



 Let's make a quadratic() method that returns an array of 
Complex objects that are the roots of the quadratic equation 
𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐

 Now, let's test it!
 What are good test cases?

public static Complex[] quadratic(double a, double b, double c) {
// Fill in code

}







 More JUnit examples



 Work on Project 4


	COMP 2000
	Last time
	Questions?
	Project 4
	Testing
	Testing
	Purposes of testing
	Stages of testing
	Development testing
	Unit testing
	Unit test example
	Automated tests
	Automated testing frameworks
	Choosing unit test cases
	Choosing unit test cases, continued
	Equivalence partitioning
	Examples of guidelines
	Black box testing
	White box testing
	Component testing
	System testing
	JUnit
	JUnit
	JUnit classes
	Assertions
	Assertions in JUnit tests
	Assertion example
	Sometimes failing is winning
	JUnit practice
	Complex class
	JUnit practice
	Quiz
	Upcoming
	Next time…
	Reminders

